domingo, 17 de agosto de 2008

DERIVADOS Y USOS DEL PETRÓLEO
Los siguientes son los diferentes productos derivados del petróleo y su utilización:
Gasolina motor corriente y extra - Para consumo en los vehículos automotores de combustión interna, entre otros usos.
Turbocombustible o turbosina - Gasolina para aviones jet, también conocida como Jet-A.
Gasolina de aviación - Para uso en aviones con motores de combustión interna.
ACPM o Diesel - De uso común en camiones y buses.
Queroseno - Se utiliza en estufas domésticas y en equipos industriales. Es el que comúnmente se llama "petróleo".
Cocinol - Especie de gasolina para consumos domésticos. Su producción es mínima.
Gas propano o GLP - Se utiliza como combustible doméstico e industrial.
Bencina industrial - Se usa como materia prima para la fabricación de disolventes alifáticos o como combustible doméstico
Combustóleo o Fuel Oil - Es un combustible pesado para hornos y calderas industriales.
Disolventes alifáticos - Sirven para la extracción de aceites, pinturas, pegantes y adhesivos; para la producción de thinner, gas para quemadores industriales, elaboración de tintas, formulación y fabricación de productos agrícolas, de caucho, ceras y betunes, y para limpieza en general.
Asfaltos - Se utilizan para la producción de asfalto y como material sellante en la industria de la construcción.
Bases lubricantes - Es la materia prima para la producción de los aceites lubricantes.
Ceras parafínicas - Es la materia prima para la producción de velas y similares, ceras para pisos, fósforos, papel parafinado, vaselinas, etc.
Polietileno - Materia prima para la industria del plástico en general
Alquitrán aromático (Arotar) - Materia prima para la elaboración de negro de humo que, a su vez, se usa en la industria de llantas. También es un diluyente
Acido nafténico - Sirve para preparar sales metálicas tales como naftenatos de calcio, cobre, zinc, plomo, cobalto, etc., que se aplican en la industria de pinturas, resinas, poliéster, detergentes, tensoactivos y fungicidas
Benceno - Sirve para fabricar ciclohexano.
Ciclohexano - Es la materia prima para producir caprolactama y ácido adípico con destino al nylon.
Tolueno - Se usa como disolvente en la fabricación de pinturas, resinas, adhesivos, pegantes, thinner y tintas, y como materia prima del benceno.
Xilenos mezclados - Se utilizan en la industria de pinturas, de insecticidas y de thinner.
Ortoxileno - Es la materia prima para la producción de anhídrido ftálico.
Alquilbenceno - Se usa en la industria de todo tipo de detergentes, para elaborar plaguicidas, ácidos sulfónicos y en la industria de curtientes.El azufre que sale de las refinerías sirve para la vulcanización del caucho, fabricación de algunos tipos de acero y preparación de ácido sulfúrico, entre otros usos. En Colombia, de otro lado, se extrae un petróleo pesado que se llama Crudo Castilla, el cual se utiliza para la producción de asfaltos y/o para mejoramiento directo de carreteras, así como para consumos en hornos y calderas.
Principales derivados del petróleo.Gas natural está formado por metano, etano, propano y butano; los dos primeros se queman en la refinería, mientras que los otros dos son separados, licuados y comprimidos en bombonas como combustibles.
Gasolina se usa como carburante para los motores de vehículos y aviones.Querosén se usa como combustible para algunos motores de aviones.Gasoil es un combustible empleado en motores diesel y para calentar máquinas y locomotoras de vapor.Aceites lubricantes se usan para engrasar piezas de máquinas.Fuel & oil se emplea como combustible en hornos, locomotoras... en lugar de carbón.Asfalto, utilizado en la pavimentación de las calles y carreteras.Parafinas y vaselina, utilizado en productos farmacéuticos.
Te has preguntado de dónde sale la materia prima para hacer esa cantidad de productos que a diario vemos en nuestros hogares, en las oficinas, en los supermercados... Pues nada más y nada menos que de el PETRÓLEO.
La industria petroquímica es la que se encarga de obtener nuevos productos a partir de los derivados del petróleo y el gas natural y los principales productos que se obtienen en una petroquímica son:
Solventes: como la glicerina y el alcohol.
Plásticos: para hacer juguetes, tubos, recipientes y otros.
Cauchos sintéticos:, para fabricar cauchos.
Fertilizantes: para cultivos.
Insecticidas: contra las plagas.
Detergentes: para lavar.
Pinturas y barnices: para pintar.




Productos derivados de la destilación del petróleo
Gasolina ligera: Destilada a partir del petróleo crudo, debe separarse del butano y del propano, y luego neutralizar los compuestos sulfurados malolientes y corrosivos con ayuda de un catalizador y de un reactivo adecuado.
Gasolina pesada: Debe ser reformada para hacerla apta como combustible en motores de explosión. Esta operación se efectúa en presencia de un catalizador de platino a 500ºC y a una presión = 35 Kg/cm2. El proceso se llama reformación catalítica y convierte a los alcanos y los cicloalcanos procedentes de la destilación del petróleo en HC aromáticos, contribuyendo a proveer materias primas para la síntesis en gran escala de otra amplia gama de compuestos.
Esta reacción va acompañada de otras, principalmente de desulfuración, y da lugar a una gasolina de alto índice de octano, útil como combustible para los motores de alto grado de compresión.
Gasolina de aviación: Se obtiene por síntesis a partir de hidrocarburos gaseosos. Esta operación, conocida con el nombre de alquilación, utiliza el ácido fluorhídrico como catalizador. La calidad final de los carburantes es mejorada mediante la incorporación de plomo tetraetilo, que le confiere el índice de octano deseado y actúa como antidetonante, aunque en la actualidad se sustituye por otros compuestos menos tóxicos y contaminantes.
Petróleo lampante o queroseno: durante muchos años fue el único producto obtenido por destilación del petroleo. Era utilizado en los quinqués y lámparas de mecha, antes de que fuera reemplazado por el alumbrado eléctrico. Sirve igualmente como combustible para ciertas estufas.
Los querosenos no tratados contiene HC aromáticos que los hacen fuliginosos y deben ser sometidos a un refino especial con ácido sulfúrico, anhídrido sulfuroso o cualquier procedimiento de desaromatización. Actualmente, se emplea en la preparación de carburantes para los motores de reacción.
Gas-oil o gasóleo:Es el carburante propio para motores diesel rápidos. Debe ser desulfurado por hidrogenación catalítica. Puede ser sometido a una operación de cracking a 500ºC en presencia de un catalizador de cobalto/molibdeno, proceso del que se obtenienen gasolinas de excelente calidad.
Fuel-oil industrial o mazut: Son los residuos pesados de la destilación. Son utilizados para calefacción doméstica o industrial.
Aceites, parafinas y betunes: Provienen de una destilación al vacío del residuo de la primera destilación y del desasfaltado de este residuo al vacío. Estas materias deben ser tratadas con la ayuda de un disolvente (fenol o furfurol), para extraer de ellas los compuestos inestables y aromáticos, desparafinados luego por filtración a -20ºC por arcillas absorbentes. Los betunes, utilizados para el revestimiento de las carreteras o tejados, se obtienen como residuo o subproducto de la destilación al vacío, previa reincorporación de asfalto precipitado mediante propano, que hace de disolvente.
Coque del petróleo: Algunas refinerías amplían incluso la separación de los productos brutos hasta la obtención del llamado coque, empleado en la fabricación de elastómeros, colorantes y electrodos.
Combustible para motores: tetraetilo de plomo, sustancia que confería a la gasolina condiciones antidetonantes, es decir, retarda la ignición espontánea de la mezcla sometida a presión.Además se debía añadir a su vez bromuro etílico, ya que permitía que el plomo se evaporara tras la combustión y no dañara el motor. El hidrocarburo más antidetonante, es decir, el que mayor resistencia tiene a quemarse bajo presión, es el conocido como isooctano. De esta forma, dependiendo de la capacidad antidetonante de una mezcla concreta se le otorga un número que lo pone en relación con el octano; según esta proporción, una gasolina con número de octano 97 es utilizable en motores cuya compresión es mucho más alta que los que utilizan gasolina del tipo 92 octanos.Lo mismo se puede decir de la gasolina utilizada comúnmente en los aviones propulsados con motores de pistón, que suelen utilizar una gasolina altamente antidetonante con un índice octano de 100.
Por contra, en los combustibles diesel, en los que la mezcla se inflama por la compresión dentro del cilindro y no por la chispa de una bujía, es esencial una mezcla de hidrocarburos que no retrasen la ignición espontánea, tomando como referencia otro hidrocarburo, el ceteno, del que sale el número ceteno para los combustibles diesel, o gasoil.
Los siguientes son los diferentes productos derivados del petróleo y su utilización:Gasolina motor corriente y extra - Para consumo en los vehículos automotores de combustión interna, entre otros usos.Turbocombustible o turbosina - Gasolina para aviones jet, también conocida como Jet-A. Gasolina de aviación - Para uso en aviones con motores de combustión interna.ACPM o Diesel - De uso común en camiones y buses. Queroseno - Se utiliza en estufas domésticas y en equipos industriales. Es el que comúnmente se llama "petróleo". Cocinol - Especie de gasolina para consumos domésticos. Su producción es mínima.Gas propano o GLP - Se utiliza como combustible doméstico e industrial.Bencina industrial - Se usa como materia prima para la fabricación de disolventes alifáticos o como combustible domésticoCombustóleo o Fuel Oil - Es un combustible pesado para hornos y calderas industriales.Disolventes alifáticos - Sirven para la extracción de aceites, pinturas, pegantes y adhesivos; para la producción de thinner, gas para quemadores industriales, elaboración de tintas, formulación y fabricación de productos agrícolas, de caucho, ceras y betunes, y para limpieza en general. Asfaltos - Se utilizan para la producción de asfalto y como material sellante en la industria de la construcción.Bases lubricantes - Es la materia prima para la producción de los aceites lubricantes. toma esta paguina aqui podras ver mas derivados,http://www.monografias.com/trabajos16/derivados-petroleo/derivados-petroleo.shtml#DERIVAD

miércoles, 28 de mayo de 2008

membrana plasmatica su funcionalidad







La célula está rodeada por una membrana, denominada "membrana plasmática". La membrana delimita el territorio de la célula y controla el contenido químico de la célula. La membrana plasmática representa el límite entre el medio extracelular y el intracelular. Es de gran importancia para los organismos, ya que a su través se transmiten mensajes que permiten a las células realizar numerosas funciones. Es tan fina que no se puede observar con el microscopio óptico, siendo sólo visible con el microscopio electrónico. Presenta las siguientes características:
Es una estructura continua que rodea a la célula. Por un lado está en contacto con el citoplasma (medio interno) y, por el otro, con el medio extracelular que representa el medio externo.
Contiene receptores específicos que permiten a la célula interaccionar con mensajeros químicos y emitir la respuesta adecuada. composicion quimica En la composición química de la membrana entran a formar parte lípidos, proteínas y glúcidos en proporciones aproximadas de 40%, 50% y 10%, respectivamente. Lípidos: En la membrana de la célula eucariota encontramos tres tipos de lípidos: fosfolípidos, glucolípidos y colesterol. Todos tienen carácter anfipático ; es decir que tienen un doble comportamiento, parte de la molécula es hidrófila y parte de la molécula es hidrófoba por lo que cuando se encuentran en un medio acuoso se orientan formando una bicapa lipídica
La membrana plasmática no es una estructura estática, sus componentes tienen posibilidades de movimiento, lo que le proporciona una cierta fluidez. Los movimientos que pueden realizar los lípidos son:
de rotación: es como si girara la molécula en torno a su eje. Es muy frecuente y el responsable en parte de los otros movimientos.
de difusión lateral: las moléculas se difunden de manera lateral dentro de la misma capa. Es el movimiento más frecuente.
flip-flop: es el movimiento de la molécula lipídica de una monocapa a la otra gracias a unas enzimas llamadas flipasas. Es el movimiento menos frecuente, por ser energéticamente más desfavorable.
de flexión: son los movimientos producidos por las colas hidrófobas de los fosfolípidos.
La fluidez es una de las características más importantes de las membranas. Depende de factores como :
la temperatura, la fluidez aumenta al aumentar la temperatura.
la naturaleza de los lípidos, la presencia de lípidos insaturados y de cadena corta favorecen el aumento de fluidez; la presencia de colesterol endurece las membranas, reduciendo su fluidez y permeabilidad.
Proteinas: Son los componentes de la membrana que desempeñan las funciones específicas (transporte, comunicación, etc). Al igual que en el caso de los lípidos , las proteinas pueden girar alrededor de su eje y muchas de ellas pueden desplazarse lateralmente (difusión lateral) por la membrana. Las proteinas de membrana se clasifican en:
Proteinas integrales: Están unidas a los lípidos intímamente, suelen atravesar la bicapa lípidica una o varias veces, por esta razón se les llama proteinas de transmembrana.
Proteinas periféricas: Se localizan a un lado u otro de la bicapa lipídica y están unidas debilmente a las cabezas polares de los lípidos de la membrana u a otras proteinas integrales por enlaces de hidrógeno.
GlúcidosSe situan en la superficie externa de las células eucariotas por lo que contribuyen a la asimetría de la membrana. Estos glúcidos son oligosacáridos unidos a los lípidos (glucolípidos), o a las proteinas (glucoproteinas). Esta cubierta de glúcidos representan el carne de identidad de las células, constituyen la cubierta celular o glucocálix, a la que se atribuyen funciones fundamentales:
Protege la superficie de las células de posibles lesiones
Confiere viscosidad a las superficies celulares, permitiendo el deslizamiento de células en movimiento, como , por ejemplo, las sanguineas
Presenta propiedades inmunitarias, por ejemplo los glúcidos del glucocálix de los glóbulos rojos representan los antígenos propios de los grupos sanguineos del sistema sanguineo ABO.
Interviene en los fenómenos de reconocimiento celular,particularmente importantes durante el desarrollo embrionario.
En los procesos de adhesión entre óvulo y espermatozoide. En la actualidad el modelo más aceptado es el propuesto por Singer y Nicholson (1972), denominado modelo del mosaico fluido , que presenta las siguientes características:
Considera que la membrana es como un mosaico fluido en el que la bicapa lipídica es la red cemetantey las proteinas embebidas en ella, interaccionando unas con otras y con los lípidos. Tanto las proteinas como los lípidos pueden desplazarse lateralmente.
Los lípidos y las proteinas integrales se hallan dispuestos en mosaico.
Las membranas son estructuras asimétricas en cuanto a la distribución fundamentalmente de los glúcidos, que sólo se encuentran en la cara externa.
Las funciones de la membrana podrían resumirse en :
TRANSPORTE
El intercambio de materia entre el interior de la célula y su ambiente externo.
RECONOCIMIENTO Y COMUNICACIÓN
Gracias a moléculas situadas en la parte externa de la membrana, que actúan como receptoras de sustancias.

martes, 27 de mayo de 2008

El resultado esencial de la mitosis es la continuidad de la información hereditaria de la célula madre en cada una de las dos células hijas. El genoma se compone de una determinada cantidad de genes organizados en cromosomas, hebras de ADN muy enrolladas que contienen la información genética vital para la célula y el organismo. Dado que cada célula debe contener completa la información genética propia de su especie, la célula madre debe hacer una copia de cada cromosoma antes de la mitosis, de forma que las dos células hijas reciban completa la información. Esto ocurre durante la interfase, es decir, el período que alterna con la mitosis en el ciclo celular, y en el que la célula entre otras cosas se prepara para dividirse.
Tras la duplicación del ADN, cada cromosoma consistirá en dos copias idénticas de la misma hebra de ADN, llamadas cromátidas hermanas, unidas entre sí por una región del cromosoma llamada centrómero. Cada cromátida hermana no se considera en esa situación un cromosoma en sí mismo, sino parte de un cromosoma que provisionalmente consta de dos cromátidas.
En animales y plantas, pero no siempre en hongos o protistas, la envoltura nuclear que separa el ADN del citoplasma se desintegra, desapareciendo la frontera que separaba el contenido nuclear del citoplasma. Los cromosomas se ordenan en el plano ecuatorial de la célula, perpendicular a un eje definido por un huso acromático. Éste es una estructura citoesquelética compleja, de forma ahusada, constituido por fibras que son filamentos de microtúbulos. Las fibras del huso dirigen el reparto de las cromátidas hermanas, una vez producida su separación, hacia los extremos del huso. Por convenio científico, a partir de este momento cada cromátida hermana sí se considera un cromosoma completo, y empezamos a hablar de cromosomas hermanos para referirnos a las estructuras idénticas que hasta ese momento llamábamos cromátidas. Como la célula se alarga, las fibras del huso “tiran” por el centrómero a los cromosomas hermanos dirigiéndolos cada uno a uno de los polos de la célula. En las mitosis más comunes, llamadas abiertas, la envoltura nuclear se deshace al principio de la mitosis y se forman dos envolturas nuevas sobre los dos grupos cromosómicos al acabar. En las mitosis cerradas, que ocurren por ejemplo en levaduras, todo el reparto ocurre dentro del núcleo, que finalmente se estrangula para formar dos núcleos separados.
Se llama cariocinesis a la formación de los dos núcleos con que concluye habitualmente la mitosis. Es posible, y ocurre en ciertos casos, que el reparto mitótico se produzca sin cariocinesis (endomitosis) dando lugar a un núcleo con el material hereditario duplicado (doble el número de cromosomas).

domingo, 18 de mayo de 2008



anotar la letra de la cancion e identificar etapas : que ocurre en el periodo de interfase ? que pasa con la cromatina ?que pasa con el nucleolo?,que pasa con la menbrana nuclear ?¿cuando se forman los centriolos ? que es el uso acromatico ?, porque razön los cromosomas se dirigen a los polos ? cual es el significado de la mitosis ? ,que pasa al final de la mitosis ?.

al trabajar con video identificar las etapas














































¿Qué es (y no es) mitosis?
Mitosis es la división nuclear más citocinesis, y produce dos células hijas idénticas durante la profase, prometafase, metafase, anafase y telofase. La interfase frecuentemente se incluye en discusiones sobre mitosis, pero la interfase técnicamente no es parte de la mitosis, más bien incluye los etapas G1, S y G2 del ciclo celular. Interfase & mitosis
Interfase
La célula está ocupada en la actividad metabólica preparándose para la mitosis (las próximas cuatro fases que conducen e incluyen la división nuclear). Los cromosomas no se disciernen claramente en el núcleo, aunque una mancha oscura llamada nucleolo, puede ser visible. La célula puede contener un par de centriolos ( o centros de organización de microtubulos en los vegetales ) los cuales son sitios de organización para los microtubulos.
Profase
La cromatina en el núcleo comienza a condensarse y se vuelve visible en el microscopio óptico como cromosomas. El núcleolo desaparece. Los centríolos comienzan a moverse a polos opuestos de la célula y fibras se extienden desde los centrómeros. Algunas fibras cruzan la célula para formar el huso mitótico.
Prometafase
La membrana nuclear se disuelve, marcando el comienzo de la prometafase. Las proteínas de adhieren a los centrómeros creando los cinetocoros. Los microtubulos se adhieren a los cinetocoros y los cromosomas comienzan a moverse.
Metafase
Fibras del huso alinean los cromosomas a lo largo del medio del núcleo celular. Esta línea es referida como, el plato de la metafase. Esta organización ayuda a asegurar que en la próxima fase, cuando los cromosomas se separan, cada nuevo núcleo recibirá una copia de cada cromosoma.
Anafase
Los pares de cromosomas se separan en los cinetocoros y se mueven a lados opuestos de la célula. El movimiento es el resultado de una combinación de: el movimiento del cinetocoro a lo largo de los microtubulos del huso y la interacción física de los microtubulos polares.
Telofase
Los cromatidos llegan a los polos opuestos de la célula, y nuevas membranas se forman alrededor de los núcleos hijos. Los cromosomas se dispersan y ya no son visibles bajo el microscopio óptico. Las fibras del huso se dispersan, y la citocinesis o la partición de la célula puede comenzar también durante esta etapa.
Citocinesis
En células animales, la citocinesis ocurre cuando un anillo fibroso compuesto de una proteína llamada actína, alrededor del centro de la célula se contrae pellizcando la célula en dos células hijas, cada una con su núcleo. En células vegetales, la pared rígida requiere que un placa celular sea sintetizada entre las dos células hijas.

mitosis

Guía sobre el Ciclo Celular y Mitosis
El Ciclo Celular Etapas del Ciclo Celular
El ciclo celular es un conjunto ordenado de eventos que culmina con el crecimiento de la célula y la división en dos células hijas. Las células que no están en división no se consideran que estén en el ciclo celular. Las etapas, mostradas a la izquierda, son G1-S-G2-M. El estado G1 quiere decir "GAP 1"(Intervalo 1). El estado S representa "Síntesis". Este es el estado cuando ocurre la replicación del ADN. El estado G2 representa "GAP 2"(Intervalo 2). El estado M representa "mitosis", y es cuando ocurre la división nuclear (los cromosomas se separan) y citoplasmática (citocinesis). La Mitosis además se divide en 4 fases, las cuáles se pueden ver en la próxima página.Regulación del ciclo celular
Cómo se controla la división celular ( y de está manera el crecimiento celular) es muy complejo. Los siguientes términos corresponden a algunos rasgos que son importantes en la regulación y lugares dónde los errores pueden conducir al cáncer. El cáncer es una enfermedad dónde la regulación del ciclo celular sale mal y el crecimiento normal y comportamiento de la célula se pierden.
KdC (kinase dependiente de ciclinas, agrega fosfato a una proteína), junto con ciclinas son las mayores llaves de control para el ciclo celular, causando que la célula se mueva de G1 a S o G2 a M.
FPM (Factor Promotor de la Maduración) incluye la KdC y ciclinas que desencadenan la progresión del ciclo celular.
p53 Es una proteína que funciona bloqueando el ciclo celular si el ADN está dañado. Si el daño es severo esta proteína puede causar apoptosis (muerte celular).
Los niveles de p53 están incrementados en células dañadas. Esto otorga tiempo para reparar el ADN por bloqueo del ciclo celular.
Una mutación de la p53 es la mutación más frecuente que conduce al cáncer. Un caso extremo de esto es el síndrome de Li Fraumeni dónde un defecto genético en la p53 conduce a una alta frecuencia de cáncer en los individuos afectados. p27 Es una proteína que se une a ciclinas y KdC bloqueando la entrada en fase S. Investigaciones recientes (Nat. Med.3, 152 (97)) la prognosis del cáncer en el ceno está determinado por los niveles de p27. Reducidos niveles de p27 predicen un mal resultado para los pacientes de cáncer en el seno.

sábado, 5 de abril de 2008

miércoles, 2 de abril de 2008

el atomo



Estructura del átomo

En el átomo distinguimos dos partes: el núcleo y la corteza.- El núcleo es la parte central del átomo y contiene partículas con carga positiva, los protones, y partículas que no poseen carga eléctrica, es decir son neutras, los neutrones. La masa de un protón es aproximadamente igual a la de un neutrón.Todos los átomos de un elemento químico tienen en el núcleo el mismo número de protones. Este número, que caracteriza a cada elemento y lo distingue de los demás, es el número atómico y se representa con la letra Z.- La corteza es la parte exterior del átomo. En ella se encuentran los electrones, con carga negativa. Éstos, ordenados en distintos niveles, giran alrededor del núcleo. La masa de un electrón es unas 2000 veces menor que la de un protón.Los átomos son eléctricamente neutros, debido a que tienen igual número de protones que de electrones. Así, el número atómico también coincide con el número de electrones.
Modelo de átomo de He (isótopo 4-He)
IsótoposLa suma del número de protones y el número de neutrones de un átomo recibe el nombre de número másico y se representa con la letra A. Aunque todos los átomos de un mismo elemento se caracterizan por tener el mismo número atómico, pueden tener distinto número de neutrones.Llamamos isótopos a las formas atómicas de un mismo elemento que se diferencian en su número másico.
Para representar un isótopo, hay que indicar el número másico (A) propio del isótopo y el número atómico (Z), colocados como índice y subíndice, respectivamente, a la izquierda del símbolo del elemento